Table 6. Additional distances ($<3.5 \AA$) around water O atoms

Distances in the YO_{8} polyhedron are not given.

$\mathrm{O}(6)-\mathrm{O}(2)$	$2.880(8)$	$\mathrm{O}(7)-\mathrm{O}(3)$	$3.070(8)$
$\mathrm{O}(3)$	$3.123(8)$	$\mathrm{O}(5)$	$2.795(8)$
$\mathrm{O}(7)$	$3.196(8)$	$\mathrm{O}(8)$	$3.275(8)$
$\mathrm{O}(8)$	$2.980(8)$	$\mathrm{O}(9)$	$2.941(8)$
$\mathrm{O}(9)$	$3.043(8)$	$\mathrm{O}(11)$	$3.015(8)$
$\mathrm{O}(11)$	$3.308(8)$		
	$\mathrm{O}(8)-\mathrm{O}(9)$	$3.281(8)$	
	$\mathrm{O}(10)$	$2.998(8)$	
	$\mathrm{O}(11)$	$3.273(8)$	

The nitrate group is connected as a unidentate ligand to the Y atom with the longest $\mathrm{Y}-\mathrm{O}$ distance. The nitrate group is almost planar, as shown in Table 4.
The structure forms layers in the $x y$ plane with $0.0<$ $z<0.5$ or $0.5<z<1.0$ (Fig. 1). These layers are formed from Y polyhedra and diselenite groups, which are joined together through common O atoms. The layers are connected by hydrogen bonds, which are probably formed between the water and the nitrate O atoms. The possible bond distances are listed in Table 6. It is, however, impossible to decide which O atoms
participate in the hydrogen bonds because the positions of the H atoms could not be determined.

We thank Professor L. Niinistö for his interest in this work.

References

Baglio, J. A. \& Gashurov, G. (1968). Acta Cryst. B24, 292-293.
Becker, W. J. \& Will, G. (1970). Z. Kristallogr. 131, 278288.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A 24, 321-324.
Lippard, S. J. \& Russ, B. J. (1968). Inorg. Chem. 7, 16861688.

Main, P. (1978). MULTAN 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. of York, England.
Newnham, R. E., Redman, M. J. \& Santoro, R. P. (1963). J. Am. Ceram. Soc. 46, 253-256.

Nilnistö, L., Valkonen, J. \& Ylinen, P. (1979). To be published.
Stewart, J. M. (1976). The XRAY system. Tech. Rep. TR446. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1979). B35, 2380-2381

Gold(III) Chloride Oxide

By Peter G. Jones, Horst Rumpel, Einhard Schwarzmann and George M. Sheldrick
Anorganish-Chemisches Institut der Universität Göttingen, Tammannstrasse 4, 3400 Göttingen, Federal Republic of Germany

(Received 4 June 1979; accepted 26 June 1979)

Abstract

AuClO, $M_{r}=248.42$, trigonal, $R \overline{3}, a=$ 8.148 (3) $\AA, \alpha=113.45(4)^{\circ}, U=341.6 \AA^{3}, Z=6$, $D_{m}=7.45(10), D_{x}=7.24 \mathrm{Mg} \mathrm{m}^{-3}, \mu(\mathrm{Mo} K a)=65.1$ $\mathrm{mm}^{-1} . R=0.064$ for 653 unique reflexions. The polymeric structure contains $[-\mathrm{Au}(\mathrm{Cl})-\mathrm{O}-]_{6}$ rings in which the Cl atoms project inwards and alternately above and below. These rings are linked by $[-\mathrm{Au}-$ $\mathrm{O}-\mathrm{l}_{2}$ squares with $\mathrm{Au} \cdots \mathrm{Au}=3.073$ (2) \AA. The coordination geometry at Au is approximately square planar, with $\mathrm{Au}-\mathrm{O} 2.07$ (1) (trans to Cl), 1.99 (2) and 2.01 (2) \AA (cis), and $\mathrm{Au}-\mathrm{Cl} 2.244$ (4) \AA.

Introduction. We first reported the preparation of gold(III) chloride oxide, AuClO, in microcrystalline form (Schwarzmann, Schulze \& Mohn, 1974). We
have since succeeded in growing larger single crystals (prisms up to 1 mm in length) by a similar method (Rumpel, 1975; quoted in Brauer, 1978); from such a crystal we have determined the structure of AuClO .

Intensities were measured on a Stoe four-circle diffractometer with monochromated Mo Ka radiation and a crystal $0.3 \times 0.15 \times 0.15 \mathrm{~mm}$. A complete sphere of data was collected up to $2 \theta=70^{\circ}$. Cell constants were obtained by least squares from angle measurements of 27 strong high-angle reflexions. Lp corrections were applied, as were empirical absorption corrections based on measurements of strong equivalent reflexions at different azimuthal angles. The 4872 reflexions were then merged to give 669 unique reflexions, of which 653 had $F>5 \sigma(F)$.
© 1979 International Union of Crystallography

Table 1. Final atomic coordinates $\left(\times 10^{4}\right)$

	x	y	z
Au	$7674 \cdot 5(10)$	$2967 \cdot 0(10)$	$4152 \cdot 1(10)$
Cl	$3778(7)$	$835(8)$	$1283(8)$
O	$6949(20)$	$1318(20)$	$5349(20)$

Fig. 1. The square-planar $\mathrm{AuO}_{3} \mathrm{Cl}$ unit, showing bond lengths (\AA) and angles $\left(^{\circ}\right.$). Other unique bond angles: $\mathrm{Cl}-\mathrm{Au}-\mathrm{O}^{1} 172 \cdot 0$ (5), $\mathrm{O}-\mathrm{Au}-\mathrm{O}^{\mathrm{il}} 174.4$ (8), $\mathrm{Au}-\mathrm{O}-\mathrm{Au}^{111}$ 120.1(7), $\mathrm{Au}-\mathrm{O}-\mathrm{Au}^{\text {iv }}$ 113.0 (9), $A u^{\text {ill }}-\mathbf{O}-\mathrm{Au}^{\mathrm{iv}} 97 \cdot 8$ (7) ${ }^{\circ}$. Symmetry transformations: (i) $1+y, z, x$; (ii) $1-y, 1-z, 1-x$; (iii) $z,-1+x, y$; (iv) $1-z$, $1-x, 1-y$. Deviations from the $\mathrm{AuO}_{3} \mathrm{Cl}$ plane: $\mathrm{Cl} 0 \cdot 09, \mathrm{O}$ $-0.08, \mathrm{Au}-0.03, \mathrm{O}^{1} 0.11, \mathrm{O}^{11}-0.09 \AA$ (e.s.d.'s are in the range 0.03 to $0.05 \AA$).

The structure was solved by conventional heavyatom methods and refined, with all atoms anisotropic, to $R=0.064$ and $R^{\prime}=\sum w^{1 / 2} \Delta / \sum w^{1 / 2}\left|F_{o}\right|=0.070$. The weighting scheme was $w=1 /\left[\sigma^{2}(F)+0.001 F^{2}\right]$. A parameter x was included to allow for extinction, where $F_{c}^{*}=F_{c}\left(1+x F_{c}^{2} / \sin 2 \theta\right)^{-1 / 4}$; it refined to 29 (6) $\times 10^{-7}$. Final atom parameters are given in Table 1, bond lengths and angles in Fig. 1. \dagger Diagrams of the structure are given as Figs. 1 and 2.

Discussion. The $\mathrm{Au}^{\text {III }}$ atom achieves its usual squareplanar coordination geometry (Fig. 1), being bonded to Cl, O and two further symmetry-generated O atoms. The r.m.s. deviation of these five atoms from the $\mathrm{AuO}_{3} \mathrm{Cl}$ plane is $0.084 \AA$. The $\mathrm{Au}-\mathrm{Cl}$ bond of 2.244 (4) \AA is terminal and amongst the shortest $\mathrm{Au}^{\mathrm{II}}-\mathrm{Cl}$ bonds known [cf. 2.23, $2 \cdot 25$ (2) \AA in the terminal bonds of $\mathrm{Au}_{2} \mathrm{Cl}_{6}$; Clark, Templeton \&

[^0]

Fig. 2. Stereodiagram of the extended structure viewed down (111). Hatched circles represent Cl , open circles O , full circles Au .

MacGillavry, 1958]. The average $\mathrm{Au}-\mathrm{O}$ length is 2.02 \AA; each O is coordinated to three Au atoms. In $\mathrm{Au}_{2} \mathrm{O}_{3}$ (Jones, Rumpel, Schwarzmann, Sheldrick \& Paulus, 1979) the $\mathrm{Au}-\mathrm{O}$ lengths are 1.93 (2) \AA (for O coordinated to two Au) and 2.04 (2) \AA (average, for O coordinated to three Au). A trans effect is seen in AuClO , the $\mathrm{Au}-\mathrm{O}$ bond trans to Cl being significantly longer $[2.07$ (1) \AA] than the other $\mathrm{Au}-\mathrm{O}$ bonds [1.99 (2), 2.01 (2) \AA]; a similar effect was observed in $\mathrm{Au}_{2} \mathrm{O}_{3}$ (Jones et al., 1979).

The extended polymeric structure of AuClO can be seen in Fig. 2, and is best described in terms of linked hexameric rings. The periphery of each ring consists of alternating Au and O atoms; the six Au atoms lie in a plane (deviations alternately $\pm 0.04 \AA$), the O atoms lying $0.29 \AA$ alternately above and below this plane. The Cl atoms project inwards, being alternately $1.93 \AA$ above and below the ring. The rings are linked via two $\mathrm{Au}-\mathrm{O}$ bonds from adjacent atoms in each ring; in the four-membered rings so formed, the $\mathrm{O}-\mathrm{Au}-\mathrm{O}$ angle is $82 \cdot 2(7)^{\circ}$. This deviation from square-planar geometry is probably connected with $\mathrm{Au} \cdots \mathrm{Au}$ repulsions across the ring: $\mathrm{Au} \cdots \mathrm{Au} 3.073$ (2) \AA (second atom at $2-x$, $1-y, 1-z$). Each hexameric ring is thus linked to six others, three above and three below its own plane.

We thank Dr H. Paulus (Technische Hochschule, Darmstadt) for the data collection. All crystallographic computing was with programs written by GMS.

References

Brauer, G. (1978). Editor. Handbuch der Präparativen Anorganischen Chemie, Vol. 2, p. 1016. Stuttgart: Ferdinand Enke Verlag.
Clark, E. S., Templeton, D. H. \& MacGillavry, C. H. (1958). Acta Cryst. 11, 284-288.

Jones, P. G., Rumpel, H., Schwarzmann, E., Sheldrick, G. M. \& Paulus, H. (1979). Acta Cryst. B35, 1435-1437. Rumpel, H. (1975). PhD dissertation, Univ. of Göttingen.
Schwarzmann, E., Schulze, E. \& Mohn, J. (1974). Z. Naturforsch. Teil B, 29, 561.

[^0]: \dagger Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34560 (6 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

